计算机学院 学术报告预告

时间:2015年12月3日星期四晚上19:00-21:45

地点: 工业中心605

题目一:Centers: their integrability and relations with the divergence

报告人:Jaume Llibre 教授

Jaume Llibre教授简介:西班牙皇家科学院院士,巴塞罗那自治大学教授。主要研究微分动力系统的定性理论及其应用,发表论文近500篇,被他人引用1000多次。出版包括《Qualitative Theory of Planar Differential Systems》在内的多部专著,现任SCI期刊《Qualitative Theory of Dynamical Systems》主编及《Applicationes Mathematicae》、《Int. J. Bifurcation and Chaos》、《Annals of Differential Equations》等期刊的编委。 Jaume Llibire教授是微分动力系统领域的国际领军人物,被邀请到多个不同国家的著名大学合作研究,培养了一大批博士研究生,其中一部分学生来自海外。

报告内容摘要: We shall recall briefly how can be the local phase portraits of the equilibrium points of an analytic differential system in the plane, and we shall put our attention in the centers. First in the kind of integrability of the different types of centers, and after in the focus--center problem, i.e. how

to distinguish a center from a focus. This is a difficult problem which is not completely solved. We shall provide some new results using the divergence of the differential system.

题目二:Limit cycles of vector fields with homogeneous nonlinearities

报告人:张祥教授

张祥教授简介:上海交通大学特聘教授, 教育部新世纪优秀人才和上海市曙光学者。主持多项国家自然科学基金。主要结果发表在《American J. Mathematics》、 《Transactions of Amer.Math.Soc.》、《J. Functional Analysis》、《J. Differential Equations》等国际一流学术期刊上。现任中国数学会奇异摄动专业委员会常务副理事长,以及《Qualitative Theory of Dynamical Systems》和《International J. Bifurcation and Chaos》等SCI杂志的编委。多次应邀在美国、加拿大、德国、法国和西班牙等国召开的动力系统国际学术会议上做邀请报告,以及合作研究。

报告内容摘要: In this talk I introduce my results on limit cycles for planar polynomial differential equations with linear plus homogenous nonlinearity of degree n larger than 1. Most known results above these equations, valid for arbitrary $n$, deal with the case where the origin is a focus or a node and give either non-existence of limit cycles or upper bounds of one or two limit cycles surrounding the origin. Here we improve some of these results and moreover we show that for n no less than 3 odd there are equations of this form

having at least (n+1)/2 limit cycles surrounding the origin. Our results include cases where the origin is a focus, a node, a saddle or a nilpotent singularity.

学术报告三、 Kukles系统的中心与极限环

报告人:黄文韬教授

黄文韬:教授、博士生导师,贺州学院副院长,中国生物数学会副理事长,广西数学会副理事长。曾为国家级特色专业、广西重点学科、广西壮族自治区级教学团队负责人,2009年获“全国优秀教育工作者”荣誉。主要研究领域为微分方程定性理论、计算机符号计算。近年来发表SCI收录论文30篇余篇,出版专著2部、教材4部,主持国家自然科学基金2项。获广西自然科学二等奖、广西科技进步三等奖各1项。

报告内容摘要: 本报告叙述了Kukles系统中心、等时中心、极限环与临界周期分支等问题的研究进展;给出了一类五次Kules系统的中心条件与临界周期分支,证明了该系统在原点可分支出8个小振幅极限环。

欢迎对数学特别是对微分方程感兴趣的同学、老师参加!

科研处

研究生处

计算机科学学院